Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2315568121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530900

RESUMEN

Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by N    5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Šcryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.


Asunto(s)
Mesna , Metiltransferasas , Mesna/metabolismo , Metiltransferasas/metabolismo , Metilación , Vitamina B 12/metabolismo , Metano/metabolismo , Amidas , Vitaminas
2.
J Inorg Biochem ; 234: 111904, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779405

RESUMEN

Some N2-fixing bacteria store Mo to maintain the formation of the vital FeMo-cofactor dependent nitrogenase under Mo depleting conditions. The Mo storage protein (MoSto), developed for this purpose, has the unique capability to compactly deposit molybdate as polyoxometalate (POM) clusters in a (αß)3 hexameric cage; the same occurs with the physicochemically related tungstate. To explore the structural diversity of W-based POM clusters, MoSto loaded under different conditions with tungstate and two site-specifically modified MoSto variants were structurally characterized by X-ray crystallography or single-particle cryo-EM. The MoSto cage contains five major locations for POM clusters occupied among others by heptanuclear, Keggin ion and even Dawson-like species also found in bulk solvent under defined conditions. We found both lacunary derivatives of these archetypical POM clusters with missing WOx units at positions exposed to bulk solvent and expanded derivatives with additional WOx units next to protecting polypeptide segments or other POM clusters. The cryo-EM map, unexpectedly, reveals a POM cluster in the cage center anchored to the wall by a WOx linker. Interestingly, distinct POM cluster structures can originate from identical, highly occupied core fragments of three to seven WOx units that partly correspond to those found in MoSto loaded with molybdate. These core fragments are firmly bound to the complementary protein template in contrast to the more variable, less occupied residual parts of the visible POM clusters. Due to their higher stability, W-based POM clusters are, on average, larger and more diverse than their Mo-based counterparts.


Asunto(s)
Molibdeno , Tungsteno , Aniones , Molibdeno/química , Oxígeno , Polielectrolitos , Solventes , Tungsteno/química
3.
Elife ; 112022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35748623

RESUMEN

Lactate oxidation with NAD+ as electron acceptor is a highly endergonic reaction. Some anaerobic bacteria overcome the energetic hurdle by flavin-based electron bifurcation/confurcation (FBEB/FBEC) using a lactate dehydrogenase (Ldh) in concert with the electron-transferring proteins EtfA and EtfB. The electron cryo-microscopically characterized (Ldh-EtfAB)2 complex of Acetobacterium woodii at 2.43 Å resolution consists of a mobile EtfAB shuttle domain located between the rigid central Ldh and the peripheral EtfAB base units. The FADs of Ldh and the EtfAB shuttle domain contact each other thereby forming the D (dehydrogenation-connected) state. The intermediary Glu37 and Glu139 may harmonize the redox potentials between the FADs and the pyruvate/lactate pair crucial for FBEC. By integrating Alphafold2 calculations a plausible novel B (bifurcation-connected) state was obtained allowing electron transfer between the EtfAB base and shuttle FADs. Kinetic analysis of enzyme variants suggests a correlation between NAD+ binding site and D-to-B-state transition implicating a 75° rotation of the EtfAB shuttle domain. The FBEC inactivity when truncating the ferredoxin domain of EtfA substantiates its role as redox relay. Lactate oxidation in Ldh is assisted by the catalytic base His423 and a metal center. On this basis, a comprehensive catalytic mechanism of the FBEC process was proposed.


Asunto(s)
Electrones , L-Lactato Deshidrogenasa , Transporte de Electrón , Cinética , L-Lactato Deshidrogenasa/metabolismo , Lactatos , NAD/metabolismo , Oxidación-Reducción
4.
Arch Biochem Biophys ; 701: 108796, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33609536

RESUMEN

The discovery of a new energy-coupling mechanism termed flavin-based electron bifurcation (FBEB) in 2008 revealed a novel field of application for flavins in biology. The key component is the bifurcating flavin endowed with strongly inverted one-electron reduction potentials (FAD/FAD•- ≪ FAD•-/FADH-) that cooperatively transfers in its reduced state one low and one high-energy electron into different directions and thereby drives an endergonic with an exergonic reduction reaction. As energy splitting at the bifurcating flavin apparently implicates one-electron chemistry, the FBEB machinery has to incorporate prior to and behind the central bifurcating flavin 2e-to-1e and 1e-to-2e switches, frequently also flavins, for oxidizing variable medium-potential two-electron donating substrates and for reducing high-potential two-electron accepting substrates. The one-electron carriers ferredoxin or flavodoxin serve as low-potential (high-energy) electron acceptors, which power endergonic processes almost exclusively in obligate anaerobic microorganisms to increase the efficiency of their energy metabolism. In this review, we outline the global organization of FBEB enzymes, the functions of the flavins therein and the surrounding of the isoalloxazine rings by which their reduction potentials are specifically adjusted in a finely tuned energy landscape.


Asunto(s)
Electrones , Metabolismo Energético/fisiología , Flavina-Adenina Dinucleótido/metabolismo , Flavodoxina/metabolismo , Anaerobiosis/fisiología , Transporte de Electrón/fisiología
5.
FEBS J ; 288(5): 1664-1678, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750208

RESUMEN

Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe-4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between -203 and -188 mV for the [4Fe-4S] center. The potentials for the FADH•/FADH- and FAD/FADH• pairs reside between -174 and -156 mV and between -81 and -19 mV, respectively. The resulting stable semiquinone FADH• species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAA'B1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. DATABASE: Structural data are available in PDB database under the accession number 6TJR.


Asunto(s)
Proteínas Bacterianas/química , Flavina-Adenina Dinucleótido/química , Hyphomicrobium/enzimología , NAD/química , Oxidorreductasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Electrones , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hyphomicrobium/genética , Modelos Moleculares , NAD/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Azufre/química , Azufre/metabolismo
6.
Nat Commun ; 10(1): 2074, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061390

RESUMEN

Hydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to -340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E°' = -493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer (n = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket. The results evidence how the protein environment inversely functionalizes two flavins to switch from low-potential one-electron to hydride transfer at the thermodynamic limit of flavin redox chemistry.


Asunto(s)
Proteínas Bacterianas/química , Coenzimas/química , Flavinas/química , Modelos Moleculares , Oxidorreductasas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Transporte de Electrón , Flavinas/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis Espectral
7.
FEBS Lett ; 592(3): 332-342, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29325219

RESUMEN

Flavin-based electron bifurcation (FBEB) is a recently discovered mode of energy coupling in anaerobic microorganisms. The electron-bifurcating caffeyl-CoA reductase (CarCDE) catalyzes the reduction of caffeyl-CoA and ferredoxin by oxidizing NADH. The 3.5 Å structure of the heterododecameric Car(CDE)4 complex of Acetobacterium woodii, presented here, reveals compared to other electron-transferring flavoprotein/acyl dehydrogenase family members an additional ferredoxin-like domain with two [4Fe-4S] clusters N-terminally fused to CarE. It might serve, in vivo, as specific adaptor for the physiological electron acceptor. Kinetic analysis of a CarCDE(∆Fd) complex indicates the bypassing of the ferredoxin-like domain by artificial electron acceptors. Site-directed mutagenesis studies substantiated the crucial role of the C-terminal arm of CarD and of ArgE203, hydrogen-bonded to the bifurcating FAD, for FBEB.


Asunto(s)
Acetobacterium/enzimología , Flavinas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Acetobacterium/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Flavoproteínas Transportadoras de Electrones/química , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Ferredoxinas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas/genética , Conformación Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA